
Proprioceptive Control for a Robotic Vehicle Over Geometric Obstacles

Kenneth J. Waldron*, Ronald C. Arkin**, Douglas Bakkum**, Ernest Merrill** , Muhammad Abdallah*

 *Stanford University **Georgia Institute of Technology
 Department of Mechanical Engineering College of Computing
 Stanford, CA 94305 Atlanta, GA 30332-0280

Abstract
In this paper we describe a software system built to
coordinate an autonomous vehicle with variable
configuration ability operating in rough terrain conditions.
The paper describes the system architecture, with an
emphasis on the action planning function. This is
intended to work with a proprioceptive algorithm that
continuously coordinates wheel torques and suspension
forces and positions to achieve optimal terrain crossing
performance.

Index terms: autonomy, rough terrain, proprioception,
coordination, action planning

1. Introduction

 It has long been recognized that an ability to vary the
configuration of a vehicle has the potential to improve the
mobility of that vehicle when crossing large obstacles [1-
3]. However, there are very few examples in which
systems have been developed to autonomously vary
configuration in response to the terrain the vehicle is
traversing. In this paper we describe a software system
designed to achieve this in a wheeled vehicle with fully
controllable, active suspension mechanisms.

1.1 Architecture for Variable Configuration Vehicles

 Terrestrial vehicles operate in a very different
environment from the largely isotropic media through
which air and water vehicles travel. Particularly when
operating off-road, land vehicles must respond to frequent
changes in gradient and soil properties, while responding
appropriately to the presence of obstacles. This means
that trajectory, and vehicle configuration re-planning must
take place very frequently. Further, in order to optimally
respond to variations in the terrain over which the vehicle
is passing, it is necessary to have a coordination process
running continuously to optimally translate vehicle
trajectory commands into commanded values for the
actuators that drive the vehicle and control its suspension.
 Based on experience with previous programs, we
adopted a layered planning, coordination and control
architecture. The upper layer plans vehicle trajectory and
configuration in response to exteroceptive sensor data,
including data from both imaging and GPS navigation
sensors, together with status information passed up from
the coordination system. Vehicles with active suspension
capability can be configured to optimally meet obstacles.
For example, when engaging a large positive obstacle, it

is necessary to raise the front wheels so that they contact
the obstacle above the “friction height” at which the
vehicle can generate sufficient traction for them to roll
over the obstacle. In land vehicle operation there is
insufficient time to run replanning algorithms every time
the terrain conditions change. We adopted an architecture
with a relatively simple master program that would select
from a library of stored plans, or behaviors, as dictated by
environmental conditions. The selection is based on the
closeness of fit of the modeled characteristics of the
terrain to a set of discriminator statistics for each
behavior.

α1

α3

h

µ1

µ2

µ3

α1

α2

µ1

µ2

w

h

Figure 1: Geometric 0bstacle models in cross-section.
The action planner selects from a library of such
models. In turn, there is a library of possible action
sequences for each model from which the planner
selects.

 The coordination, or proprioceptive, layer has the task
of translating the vehicle velocity and configuration
commands, generated by the active behavior, into
commanded values of the actuator controllers. It responds
to sensors internal to the system, hence the label
“proprioceptive”. These include actuator feedback
sensors, additional sensors on the vehicle and suspension
structures, and an inertial measurement unit. It translated
the vehicle motion commands into force commands via
dynamic models of the vehicle and its suspension
elements. The system level commanded forces were
allocated to the wheel and suspension actuators on the
basis of an optimizing principle. It is possible to do this

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Proprioceptive Control for a Robotic Vehicle Over Geometric Obstacles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

using efficient, closed-form computations for physically
meaningful optimizing principles [7]. This might be
thought of as smart traction control in analogy to
conventional vehicles. In fact the system does far more
than that. The proprioceptive algorithm must run
continuously at update rates of the order of 100 Hz. It
passes status information to the upper layer, enabling that
layer to determine when it is necessary to terminate a
segment of a plan and move on to a new segment. The
control layer consists of the actuator controllers.
Coordination computations that have to be done at high
update rates, such as those internal to a wheel-station with
an active suspension, are also included in this level. This
layer responds to the commanded force/torque, or
position commands from the proprioceptive layer, and to
the actuator feedback sensors.

2. Planning Layer

 When crossing geometric obstacles, or near
approximations to such obstacles, use of the variable
configuration capability provides significant
improvements in performance. Consequently, for
obstacles in this category relatively complex
configuration plans, called action sequences in the
following, have been developed.
 For more general obstacles, the proprioceptive
algorithm assumes a more important role with its ability
to respond continuously to changes in the terrain. In this
case relatively simple action sequences are appropriate,
such as simply pitching back when engaging a positive
obstacle, using the proprioceptive algorithm to effect a
crossing of the obstacle, then returning to the normal
vehicle attitude.
 For purposes of this study, trajectory planning for
geometric obstacles consists of making an appropriate
selection from among a library of action sequence plans
associated with each obstacle map. A basic set of
geometric obstacle maps is shown in Figure 1. The
generalized step obstacle can be used in either direction to
develop plans for both positive and negative obstacles.
Each plan consists of a series of segments to be executed
in sequence. A segment consists of a set of rules for
generating position/velocity commands to the
proprioceptive layer. The termination of a segment is
determined by satisfaction of an inequality of a function
of system variables.
 The proprioceptive layer may also notify the planner
of inability to complete execution of a segment due to
wheel slip, instability, or some other condition. The
planner will then search the library of action sequence
plans for that obstacle for another valid plan, and may
initiate execution of that plan.

3. System Design

Proprioceptive control was implemented using

multiple distributed computational processes as shown in
figure 2. Each layer in the system was implemented as its

own process, although additional layers were included as
necessary. Some additional processes used for mission
specification and display, that are not germane to this
paper, are not depicted.

The Mission Control Unit (MCU) and Vehicle
Control Unit (VCU) are separate PC’s connected by a
backplane. The Robot Executable and HServer are
processes running on the MCU. The upper, action-
selection, layer was implemented in the Robot
Executable, which is a program compiled for each
particular mission, generated by the MissionLab software
system1 [4]. Vehicle trajectory in the form of waypoints to
a specific goal location is compiled into the Robot
Executable. In addition, the library of stored behaviors for
each specific obstacle type is stored and accessed here.
The HServer (Hardware Server) process is used to handle
the details of controlling a particular type of robot so that
the Robot Executable can be kept as general as possible.
The coordination, or proprioceptive layer, was
implemented in the VCU, while the control layer was
simulated using Visual Nastran. IPT, an inter-process
communications package from Carnegie Mellon was used
to handle the communication between the Robot
Executable and HServer. Low-level shared memory was
used for communication between HServer and the VCU
due to the real-time requirements of the proprioceptive
layer.

 Robot
Exec.

HServer

VCU

MCU

IPC

Visual Nastran
Figure 2: System Architecture

When an obstacle is encountered, a stored behavior is

selected by the upper layer in the Robot Executable. The
upper layer then sends high-level vehicle control
commands for the heading, speed, acceleration and either
wheel heights or vehicle attitude based on the current
segment of the behavior (Table 1). These values act as
biases for the lower layers. For example, the control layer

1 MissionLab v5.0 is freely available at
www.cc.gatech.edu/ai/robot-lab/research/MissionLab.html

 2

will compute the best height of each wheel based on
traction, with a bias towards the values provided by the
upper layer.

In addition, triggering conditions are sent for
transitioning to the next behavioral phase. For example,
when a positive obstacle is encountered the first phase of
the behavior calls for the vehicle to move forward, while
pitching the front of the vehicle upward 0.45 radians. The
upper layer can also specify that the trigger for moving to
the next segment of the plan is for |ξ1, ξ2 | < 0.3 radians,
where ξ1 and ξ2 are the angles for the contact force line
of action on wheels 1 & 2 and the z axis, respectively.

Table 1: Upper Layer commands to the
 Proprioceptive Layer.

 The triggering mechanisms are quite flexible. Any
number of conditions might be involved. For example, the
upper layer could specify a trigger when any of the wheel
heights on the left side is greater than any of the wheel
heights on the right side. Or, one or more parameters
could be compared to a numerical values, such as the
|ξ1, ξ2 | < 0.3rad example given above. Multiple triggering
conditions could be specified for each state and identified
with the request_num field of the message.
 The strength in the design lies in its modularity and in
the fact that the upper layer can execute at a much slower
rate than is required by the lower layers. Since the
triggering criteria is known by the proprioceptive layer, it
can notify the upper layer of only those events that are of
importance to the upper layer in its current state. This
allows allows plan reconfiguration and interruption to
occur from both the operator and high-level planner as
well as due to unexpected interactions with the terrain or
unpredicted vehicle performance.

4. Design of Action Sequences

 The development of a plan to surmount a given
obstacle is a design problem. There are an infinite number
of possible solutions. The first decision was to use a
segmented plan. This simplifies the problem in several
ways. It removes the need for close coupling between the
planning and proprioceptive algorithms. Further, it is
necessary to change the set of commanded variables from

time to time, particularly to accommodate a change of
vehicle configuration. That inherently segments the plan
into a sequence of actions. Configuration of the vehicle
can be addressed on a coarse time-scale. The plan
becomes an action sequence in which the commanded
values of the vehicle motion and configuration variables
are constant on each segment of the plan, but the variables
and/or values change at the transition to the next segment.
 The essential elements of each plan segment are the set
of variables used and the commanded values passed down
to the proprioceptive algorithm, together with the
conditions that determine the termination of the segment.
 It is necessary that the command variables chosen be
consistent with the number of degrees of freedom of the
vehicle. For a wheeled vehicle the non-holonomic nature
of the wheel contact implies that lateral displacement or
velocity cannot be directly controlled. Thus, the number
of controllable degrees of freedom of the vehicle body is
five, given that an active suspension allows controlled
motion along the vehicle’s vertical axis, and about the
pitch and roll axes, as well as motion along the
longitudinal axis and about the yaw axis.

x
y

z

Direction of
motion

n
1

n
5n

3

t
1 t

3

t
5

θ yθ x

θ z

R
L

1 3

52 4
6

Parameter Description
use_reverse Flag to go in reverse
wheel_flags Flag to indicate wheel heights to be commanded

individually, all together (vehicle elevation) or
vehicle attitude (roll, pitch) to be used instead.

wheel_1_height Height of wheel 1.
wheel_2_height Height of wheel 2.
wheel_3_height Height of wheel 3.
wheel_4_height Height of wheel 4.
wheel_5_height Height of wheel 5.
wheel_6_height Height of wheel 6.
vehicle elevation Height of all wheels.
egocentric_heading_angle (yaw) Commanded heading of vehicle, relative to vehicle

coordinate system.
roll_angle Commanded roll angle.
pitch_angle Commanded pitch angle.
Speed Commanded (forward) vehicle speed.
acceleration; Commanded (forward) acceleration.

Figure 3: Vehicle coordinate system and motion
degrees of freedom. The reference frame is aligned
with the horizontal longitudinal axis of the body (x)
and the vertical when the vehicle is resting on a level
plane with the suspension positions neutral (z).
Rotation about the x axis (θx) is referred to as roll,
about the y axis (θy) is referred to as pitch, and about
the z axis (θz) is yaw. Because of the non-holonomic
nature of the wheel-ground contact lateral (y)
displacement, or velocity, cannot be directly
controlled. The commandable degrees of freedom are,
therefore, x, z, θx, θy, θz. In order to control vehicle
configuration, suspension positions may be substituted
for some of these degrees of freedom.

 The basic motion degrees of freedom are shown in
Figure 3. However, it is also necessary to command the
suspension position to control vehicle configuration.
Suspension position commands can be substituted for
motion commands, so long as the total number of five
commanded variables is maintained. However, it is

 3

necessary also to ensure that the command set is
consistent. For example, commanding vehicle body
height, by commanding position in the direction of the
vehicle z axis is clearly inconsistent. Similarly, directly
commanding suspension position on opposite sides of the
vehicle determines the roll position. Thus, commanding a
roll angle, or rate, in addition to the suspension
commands would lead to an inconsistency. Likewise, if
two suspension positions were commanded on the same
side of the vehicle, commanding a pitch angle, or rate,
would be inconsistent. It might be noted that, on uneven
terrain these would not, in general, be inconsistencies in
the strict kinematic sense. However, the algorithm would
be extremely ill conditioned, and the vehicle behavior
would be unacceptable from a practical point of view.
 The procedure used for designing action plans was
first to draw out the vehicle geometry in a series of
positions that mark transitions. They are identified by
changes in the system mechanics, caused by changes in
the contact configuration: either new points of contact
with the terrain, or the breaking of old points of contact.
At each such transition position a set of commanded
values is identified that will take the vehicle to the next
position. Also, one or more inequality conditions that
identify the next transition position are formulated. Figure
4 shows examples of transition positions together with
commanded variables and segment end conditions. Note
again that this is a design problem. For a vehicle with
given geometry there are multiple possible action plans
that could be used to cross a given obstacle.

Vx =0.5 m / s
θy =0.4 rad,θz =0
l1 =min, l2 =min
F3 <50 kg, F4 <50 kg

Figure 4: Two successive positions in a crossing of a
negative step obstacle, as laid out graphically during
the development of an action sequence. Here the front
suspension is being retracted to ground the middle
wheels. Hence the commanded variables are
longitudinal velocity, pitch angle, yaw angle and the
positions of the two front suspensions. The segment

continues until the middle wheels are grounded as
detected by the contact forces on both those wheels
exceeding a threshold value.

Each plan was then laid out in the form of a flow chart.
This was found to be useful in explicating the interactions
between the planner and the proprioceptive algorithm. A
small portion of such a chart is shown on Figure 5. In this
figure, the arrows represent stimuli, or commands. The
circles represent actions of the planner, and the rectangles
represent the responses of the proprioceptive software.
The rhomboids represent inequality tests.

no

yes

no

yes

Engage
obstacle and
pitch back

Vx =0.5m / s,
θy = −0.25,
θx = 0,θz =0, z =0

l1 <max,
l2 <max

Vx =0.5m / s,
θy = −0.45, θx =0,
l1 =max, l2 = max

l3 <max,
l4 <max

Pitch
further back

no

yes

Vx =0.5m / s,
θy = −0.45, θx =0,
l3 =max, l4 =max

F3 >50kg,
F4 >50kg

Move
front wheels

onto lip

Figure 5: A small part of the flow chart of a plan for
surmounting a positive step obstacle. The circles
represent the plan segments executed in the planner.
The values in the rectangles represent the commanded
variables transmitted to the proprioceptive algorithm.
The diamonds represent value tests to determine
whether the current plan segment should continue or
be terminated.

Figure 6: MissionLab / Planning Layer GUI. The
NegotiatePosObst* contains the action sequence used
in the simulation studies.

At this point the plan was in a form closely related to the
stimulus/response semantics of Missionlab [4]. It was
encoded in CDL {5] and implemented in Missionlab as

 4

shown in Figures 6 and 7. Traditionally, MissionLab has
been used in applications in a planar environment by
sending commands of two degrees of freedom to the
vehicle: heading and speed. However, when using an
actuated suspension, three additional degrees of freedom
are added: ride height, roll, and pitch. Missionlab was
modified to accommodate these additional parameters.

Figure 7: A general action sequence in MissionLab, as
is used by the NegotiatePosObst* task. The circles
represent action segments (command of the five
degrees of freedom is specified here). The rectangles
represent information returned by the coordination
layer. Two failure modes are denoted, but more can be
added.

The planning layer implemented using MissionLab

was chosen to be distinct from the coordination layer, in
order to provide a user interface abstracted from the
detailed computations involved with the wheel and
suspension motors: only high level vehicle commands
need be of concern when constructing action sequences.
This and a graphical user input of vehicle parameters via
slider bars allows simple construction and modification of
action sequences for development and testing purposes.

Once the vehicle is in action, the planning layer
receives input from the exteroceptive sensors (e.g., vision,
ladar) to classify any navigable obstacles or terrain, and
then chooses an appropriate action sequence to navigate
the terrain. The communication between the planning
layer and the coordination layer is bidirectional (Figure
8). After an action sequence is selected, the planning layer
sends a set of numerical constant parameters of the type
double or float to the proprioception layer. The constant
parameters represent both (1) commands specifying the
five degrees of freedom for each action segment, and (2)
specification of an inequality signifying the timing to
transition between action segments. The coordination
layer then sends back (1) a Boolean Yes/No command to
a requested transition between action segments and (2) an
integer specifying the occurrence of a failure mode.
Communication rates of 10 Hz are sufficient.

In one sense, the coordination layer acts as a
translator between the planning layer and the wheel and
suspension motors; therefore, the planning layer is
general and can remain the same for subtle changes in
vehicle geometries. The coordination layer adjusts the
wheel and suspension motor parameters to satisfy the
specification on the degrees of freedom: heading, speed,

and vehicle attitude (roll, pitch, and ride height; or
individual wheel suspension heights).

Planning Layer

Transition
between

Plan selection
(exteroceptive

 Transition

Failure Mode
Heading, Speed,
Vehicle attitude

Proprioception Layer

Suspension
control

Monitor transitions
and failure modes

Figure 8: Action sequence communication between the
planning and coordination / proprioception layers.

In addition, the planning layer sends the parameters
of an inequality (or a set of inequalities) to the
coordination layer that once met, signifies satisfactory
completion of a segment of the action sequence. The
coordination layer uses proprioceptive sensors to monitor
the inequality and returns a Boolean Yes/No upon its
satisfaction.

The planning layer receives two types of feedback
from the coordination layer: the above mentioned signal
to transition, and also a vehicle failure notification such as
‘wheel slip’ or ‘unstable’. Depending on the failure
mode, a regression to a prior action segment will occur, or
a new action sequence will be chosen.

5. Proprioception

 As was indicated above, the proprioceptive software
translates body motion and configuration commands from
the motion planner into force and torque commands to the
traction and suspension actuators. The proprioceptive
software receives inputs from sensors internal to the
vehicle such as traction motor torque sensors, suspension
member force sensors, suspension and wheel encoders
and/or tachometers, body mounted and suspension-
mounted accelerometers etc. This includes an inertial
measurement unit strapped down to the vehicle body.
 The proprioceptive algorithm must run continuously at
update rates of the order of 100 Hz. Therefore, speed of
computation is an issue. Its function is very similar to the

 5

corresponding algorithm used for the Adaptive
Suspension Vehicle project [6,7], despite the apparently
very different locomotion mechanics of a walking
machine versus a wheeled vehicle with active suspension.
The major differences in the software for a wheeled
robotic vehicle with active suspension and a walking
machine are actually at the action planning level, not the
proprioceptive level. In both cases, the fundamental
physical principle on which the proprioceptive algorithm
is built is minimizing the tendency of the locomotion
element to slip. In fact, the exact same algorithm could
have been used. However, it does not perform well in
extreme terrain.
 The algorithm actually used, and the underlying
physical and mathematical models, will be described in
detail elsewhere [8], as space prevents a complete
exposition here. It is based on decomposition of the
commanded force system calculated for the vehicle into
planar force systems in the central planes of the wheels on
either side of the vehicle. In this respect it does require
that the wheels on each side of the vehicle remain close to
coplanar regardless of suspension movements.
 The broad principles of operation of the
proprioceptive software are that the commanded values
received from the upper layer are compared to the
corresponding actual values of the vehicle motion
variables as measured by the IMU to generate a rate error
system. This is divided by a time interval to create an
acceleration system that is multiplied by an inertia matrix
to generate an inertial force system. That is combined
with the vehicle weight to generate a commanded force
system on the vehicle body. That force system is then
decomposed into the two planar force systems based on
the wheel center planes on either side of the vehicle body.
Lateral force is split between those force systems in
proportion to the respective resultants.

Figure 9: A frame from the ADAMS simulation of the
vehicle crossing a 1 m positive step obstacle. Tire
deflections were not graphically modeled, so the
apparent penetration of the tires is displaying tire
deflections.

The algorithm then allocates the in-plane forces to
the wheel-ground contacts according to one of two
principles. In easy terrain a simple form of the zero
interaction force principle is used. This distributes weight
and traction force as evenly as possible, and is optimal in
weak soil conditions [7]. In strongly uneven terrain a

different principle is used to effectively maximize
available traction. Heuristically, the way this works is to
select the two wheels on a side of the vehicle that are
geometrically best located to generate traction. The third
wheel is then unweighted to place as much load as
possible on the two wheels identified. Basically,
tangential contact, or traction force is generated by
friction with the normal load being generated by the
vehicle weight. It therefore is optimal to place the weight
load on those wheels that are best positioned to generate
traction force.
 Of course, the above is a broad brush description.
There are a number of special cases that need to be
accommodated, such as those in which several wheels are
out of contact with the ground, or those in which one or
more suspensions are against the bump stops.

6. Simulation Studies

Simulation models of the vehicle were developed in
both Visual Nastran and ADAMS. The former was a high
fidelity model including detailed models of the wheel-
ground mechanics, and the active suspension mechanism.
The latter was a simplified model that used linearized
active suspension and tire models, and a Coulomb friction
model of the wheel-ground contact. The former model ran
much slower than real-time and proved to be very
cumbersome for purposes of debugging the coordination
software. Thus, although the first version of the action
sequence planner was to have been tested on this
platform, it did not run successfully.

The proprioceptive software was successfully run on
the ADAMS simulation platform, which ran at near real-
time speeds with a very simplified action sequence. The
simulated vehicle did successfully cross a 1 m step
obstacle at 10 m/s. Figure 9 is a frame from this
simulation.

7. Discussion

We have described work done on coordination of a
robotic vehicle with variable configuration capability in
the form of an active suspension system. The system
described was fully designed and coded. Initial testing
using fully dynamic vehicle models was successful. Work
continues on testing of the full system against a high-
fidelity simulation model.

Acknowledgments

This research was supported by DARPA's Unmanned
Ground Combat Vehicle Program and SAIC Corporation.
The authors would also like to thank Mr. Raghavan
Madhavan for his work in coding the proprioceptive
algorithm.

 6

 7

References

[1] Rayfield, W.P., 1970, “Mars Roving Vehicle
Configuration”, R.P.I. Technical Report MP-16 to the
National Aeronautics and Space Administration.
[2] Hirose, S., Aoki, S., Miyake, J., “Design and Control
of Quadry-Truck Crawler Vehicle Helios-II”, RoManSy 8
Proceedings, Warsaw University of Technology
Publications, 1990, pp. 320-329.
[3] Murphy, R.R., 2000, “Marsupial and shape-shifting
Robots for Urban Search and Rescue”, IEEE Intelligent
Systems 15(3), pp. 14-19.
[4] MacKenzie, D., Arkin, R.C., and Cameron, R.,
“Multiagent Mission Specification and Execution”,
Autonomous Robots, Vol. 4, No. 1, Jan 1997, pp. 29-52.
[5] User Manual for MissionLab V5.0, Georgia Tech
Mobile Robot Laboratory, College of Computing, January
2002.
[6] Pugh, D.R., Ribble E.A., Vohnout V.J., Bihari, T.E.,
Walliser, T.M., Patterson, M.R., Waldron, K.J., 1990,
“Technical Description of the Adaptive Suspension
Vehicle,” International Journal of Robotics Research,
Vol. 9, No. 2, pp. 24-42.
[7] Kumar, V. and Waldron, K. J., "Force Distribution in
Closed Kinematic Chains" IEEE Transactions on
Robotics and Automation, Vol. 4, No. 6, December 1988,
pp. 657-664.
[8] Waldron, K.J. and Abdallah, M., “A Traction-
Optimizing Coordination Algorithm for Off-Road
Operation of Robotic Vehicles”, in preparation for
IEEE/ASME Transactions on Mechatronics.

	Abstract
	1. Introduction
	Figure 1: Geometric 0bstacle models in cross-section. The action planner selects from a library of such models. In turn, there is a library of possible action sequences for each model from which the planner selects.

	2. Planning Layer
	3. System Design
	4. Design of Action Sequences
	5. Proprioception
	6. Simulation Studies
	7. Discussion
	
	Acknowledgments
	References

	Abstract
	1. Introduction
	Figure 1: Geometric 0bstacle models in cross-section. The action planner selects from a library of such models. In turn, there is a library of possible action sequences for each model from which the planner selects.

	2. Planning Layer
	3. System Design
	4. Design of Action Sequences
	5. Proprioception
	6. Simulation Studies
	7. Discussion
	
	Acknowledgments
	References

